Unit 3 CodeBot Python Code By Mission

Mission 5 Lesson 1 - Fence Patrol

val = ls.read(©@)

Read a line sensor. The number of the line sensor is the
(argument). It returns an integer between 0 and 4095.

print(val)

Print the value of a variable to the console panel.

print("Line sensor value = ", val)

Print the value of a variable with a text message.

Mission 5 Lesson 2 - Fence Patrol

is_detected = ls.read(®) > threshold

Assign a Boolean value to a variable.

while True:
Read line sensor @
is_detected = ls.read(@) > threshold
leds.ls_num(8, is_detected)

A use of Boolean value for turning on/off an LED

Surface Detection

Dark line on light surface — use val > threshold
Light line on dark surface — use val < threshold

def detect_line(n):
is_detected = 1ls.read(n) > threshold
leds.ls_num(n, is_detected)

Define a function with a parameter for detecting a line.

detect_line(®)

Call the function for a single, specific line sensor

n ==

while n < 5:
detect_line(n)
n=n+1

While loop that repeats 5 times.

It uses n as the control variable, which is initialized outside the loop
and incremented inside the loop. It is used to determine which line
sensor to read and which LED to turn on/off.

def scan_lines():

n ==~

while n < 5:
detect_line(n)
n=n+1

A function that calls another function.

Mission 5 Lesson 3 - Fence Patrol

while True:
if buttons.was_pressed(9):
break

motors.enable(True)

(Review) Wait loop.
A safety feature; the ‘bot waits until BTN-O is pressed before
continuing the program.

return is detected
return got_line

Function return
The value of the variable is returned to the function call.

hit = scan_lines()

if detect_line(n):

Function call
The value of the return is used in the assignment or if statement.

leds.user(line_count)

Use a variable to turn on user LEDs.
Line count needs to have a value from O to 255.

line_count = line_count + 1
if line_count == 256:
line_count = ©

Reset a counter variable when it reaches its maximum number.

Mission 5 Lesson 4 - Fence Patrol

def go_forward():
motors.run(LEFT, 45)
motors.run(RIGHT, 45)

Define a function for movement.

else:
go_forward()

Call a function for movement.

Mission 6 Lesson 1 - Line Follower

a_list = [4, 2, 5, 3, 6, 9, 1, 0]

detected = [False, False, False, False, False]

Define a list

num_items = len(a_list)

Length of a list (number of items)

first_item = a_list[@]

Access a single item in a list

if is_detected:
detected[n] = True

Update the item at index n

leds.1ls([True, True, False, False, False])

Use a list to turn on/off LEDs

vals = check_lines(2600)
leds.ls(vals)

Return a list of Boolean values, and then use the list to turn on/off
LEDs.

Mission 6 Lesson 2 - Line Follower

Botcore line sensor function (similar to check_lines but faster)

vals = ls.chec k(2600, FEI]_SE) Thresh is the threshold for detecting a line.
vals = ls.check(thresh, is reflective) False for a black line, True for a white line.
- The function returns a tuple of bools (not a list)
Returns the line sensor readings when entered in the Console
1s.check(@) Do) 9

elif vals[1] or vals[2] or vals[3]:

Uses the logical operator “or” for multiple conditions.
If any condition is true, the statement will evaluate to true.

Mission 6 Lesson 3 - Line Follower

def drive(left, right):
motors.run(LEFT, left)
motors.run(RIGHT, right)

Define a function for driving the ‘bot that uses parameters for the
left and right wheel speeds.

if vals == (1, @, @, @, 9):
drive(e, 30)

Use the tuple in a comparison.
Call the drive function, selecting left and right speeds as the
arguments.

sensors = ls.check(®)

Return a tuple of integers for the line sensor readings.

if abs(gap) < 56@8@:

Use the absolute value function.

is_reflective = line < ground

Use a condition to set a Boolean value.

thresh = round(ground + (gap/2))

Use the round function; the result is an integer.

global thresh, is_reflective

Used at the beginning of function, the “global” keyword makes
the variables global instead of local. The variables can be listed in
any order.

elif buttons.was_pressed(1):
calibrate()

Call a function when a button is pressed.

